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Abstract-—In this paper. the response of a vertically heterogeneous elastic halt-space with a smooth
modulus variation under a set of time-harmonic ring- and point-sources is derived analytically. A
method of evaluation via asymptotic decomposition for the singular Green's functions is presented.
In the technique. the Green's functions are decomposed into an analytical part and a residual
component. Capturing the corresponding singular behavior. the analytical parts of the ring- and
point-load Green's functions are expressible in terms of the elliptic integrals and algebraic functions,
respectively. The residual integrals which are regular can be evaluated by numerical contour inte-
gration. To obtain correct results, one must note and take into account the existence of multiple
poles along the formal path of the inversion integrals. the details of which are discussed in the paper.
To highlight the various aspects of the physical problem. a set of illustrative numerical results is
included.

I INTRODUCTION

Solutions to elastodynamic boundary value problems associated with a smoothly het-
erogeneous semi-infinite solid are of practical significance in the field of geomechanics,
seismology. and earthquake engineering because of the common occurrence of such site
conditions with respect to depth as a result of the natural deposition process as well as
gravity-induced stress conditions (Hardin and Drnevich. 1972). They are also relevant to
the stress analysis of modern micro-electronic components whose material property may
vary continuously by design. While a boundary element formulation can provide an efficient
and rigorous treatment of such elastodynamic problems (Brebbia er al., 1984 ; Pak and Ji,
1994), its full potential for engineering application involving a heterogeneous medium has
thus far been limited to cases which can be simulated by homogeneous or piecewise
homogeneous media (Apsel. 1979; Pak. 1987 Banerjee and Mamoon, 1990) owing to a
lack of other Green's functions. As a cause of its complex mathematical description, the
phenomenon of wave propagation in a smoothly heterogeneous solid is, among other
aspects. generally characterized by continuous refractions which lead to curvilinear rays of
travel. While the gradual modulus variation can be approximated by a multi-layered system,
the resulting model can only predict piecewise-straight ravs and may further suffer from
various artificial inter-layer dynamic phenomena which are not present in the true physical
problem.

In this paper, a set of fundamental Green's functions for a vertically heterogeneous
half-space with a linear shear wave velocity profile is presented. Through the use of a
method of potentials. it is shown that the influence fields tor internal ring- and point-loads
can be expressed as a combination of a number of Bessel integrals. To facilitate their
application in a computational boundary element setting. an accurate and efficient numeri-
cal procedure for the evaluation of these singular solutions is also described. Useful as
benchmarks for the development and assessment of related approximate solutions, some
typical results for the exact Green's [unctions are also provided.
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2. MATHEMATICAL SOLUTION FOR A HETEROGENEOUS HALF-SPACE UNDER A
GENERAL BURIED SOURCE

Of interest here is the development of a set of fundamental solutions for a vertically
heterogeneous elastic half-space with a constant mass density p and a linear shear wave
velocity profile. An example of such a problem is the case of a solid medium with Lame’
constants

o) = 1(2) = (1 +h2)', 220, b>0, (D
whose equations of motion can be written as
(A +210V(V-u) — ¥V = Vxu+ (V- u)Vi+ (Vu+Va")Vu+1f = pii. ()

By virtue of the displacement-potential representation
/1 1
w= V[ o) Vx(uge,+uv xne,). 3)
e

in cylindrical coordinates (r. ¢, =) with e, being the unit vector in the z-direction, the solution
to (1) and (2) can be determined in terms of the pseudo-dilatational potential ¢ and the
pseudo-distortional potentials ¥ and 5. which can uncouple the Navier equations (Pak and
Guzina, 1995). For a time harmonic. arbitrarily-distributed buried source across the plane
z = s in the vertically heterogeneous half-space with

by s oy = {E L, P(r)em e} 4
arbos 0T =150, 0, (e e (5)
(05 n—t (s y="1E, _, R,(reme), (6)

where t_,, 7., . . . are the components of the Cauchy stress tensor, it can be shown by means
of Fourier decomposition and Hankel transforms that the displacement response admits
the following representation :

w00 =X | EE DI, dEem e @)
vu

u(l(ra {)~ o) = z/v" 4 ' l’?}]/l’,( :tﬁ :)i']m(ri) dé e””“ ei“[ (8)
Jo

wAr 0.2y =%, | B (5 2)ET (rE) dE e e, (9)
0

In the above. w is the frequency of the time-harmonic motion, @ denotes the m™-order
Hankel transform

n'l

37E) = J u(r)rd, (rE) dr. (10)

and J,, i1s the Bessel function of the 1" kind of order m. Together with the displacement
continuity requirement at - = s, the free-surface condition at z =0 and the regularity
condition at infinity. (4)—(6) yield
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where Q,, Q., 7. 7> and 7, are functions given in Appendix A involving modified Bessel
functions, and X,,. Y,, and Z,, are defined by the loading in the form of

X, (& = Pr (& —iQr () (14)
Y (&) = P (& +iQn () (15)
Z,(&) = R, (16)

As will be tllustrated in the next section, many practical fundamental solutions of interest
to integral equation methods can be derived by appropriate specification of the distributed
loading.

3. DYNAMIC GREEN'S FUNCTIONS FOR A HETEROGENEOUS HALF-SPACE

3.1. Axisymmetric radial ring-load of radius a at 7 =
With the time factor e"” suppressed henceforth for brevity, a time-harmonic radial
ring-load of unit intensity acting at a depth s can be expressed as

T (r.0.s Y=t (r.0.57) = o(r —u). (17)

where d(r) 18 the one-dimensional Dirac delta function. In the context of (4), (17) 1s
equivalent to the case where

Pi(r:s) = o(r—ua). (18)

with P, =0 for m # 0 and Q,, = R, = 0 for all m. As a result, one may write the dis-
placement Green’s functions as

s

L?f,mg(l‘. 0.z a.s) = : ‘ N (é. SN /,)5.]] (ai)-ll (’s) di (19)
0 Jo

w0,z a0s) = 0 (20)

Q0.2 ) = = [ Q8 m s T (@d) o (rd) A, Q1)
/u[).)[)

where the first and the second subscript denote the direction of the load and the displacement
component, respectively.
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320 Axisvinmerric torsional ring-load of radius a at z = s
For the case of an axisymmetric internal torsional ring load which can be defined by

T oy )y 1, 0.5 ) = d(r—a). (22)
its Fourier components in (4) (6) are
Qutriy) = olr—a), (23)

Q,., = 0form # 0and P, = R, = O forall m. In this case, the corresponding radial, angular
and vertical components of the influence ficld can be expressed as

ot 0oz iasy =0 (24)
o ) . -
WSz iao sy s (s BYES (@), (rE) dE (25)
ﬂ'l JI
w0 zias) = 0. (26)

330 Axisvmmerric vertical ring-toud of radius a arz = s
A vertical ring-load of unit intensity acting in the interior of a half-space can be defined
by

T 0oy e s ) = 0r—a), (27)
which implies

Roroy) = d(r—a). (28)

with R, = O form # 0and P, = Q,. = 0 for all m. By virtue of (7) and (9), the components
of the displacement influence field can be written as

A

QTR0 ) | Gy D) (ad) T, (E) dé 29)
/“' JU
w Mz ias)y =0 (30)
a . . . N
a™ .z ial sy = ' Q- (l.owib)EJ (@), (rE)de. 3D
ﬂ” N
Asyi(S.zixihy = (loviziby e m by = 538 2 b)), Q(E o5 h) = Qa(E, 55z b)and

s ozixih) = Qucisizohyo 1t tollows that the foregoing Green’s functions exhibit the
characteristic spatial reciprocity. e, 4™ (r. ). 2 a8y = 4" (a, 6.5 r, 2) in the linear theory

of elasticity.
3.4, Uniform horvizontal ring-load of radius a at z = s

For a uniform. time-harmonic horizontal ring load of unit intensity acting in the 6 = 6,
direction. the load-induced stress discontinuities are

T,y ) T sy = cos (0—60)0(r—a) (32)

Loy e 0oy = —sin (B—0)0(r —a). (33)
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From (32) and (33), one can easily deduce the Fourier components of the loading coefficients
are

it

2

Po(ris)= 8r—a) (34)

il

3 -d(r—a), (35)

Q. (r:s)= =

with P,, = Q,, = 0 form # + 1 and R,, = 0 for ail m. For the foregoing asymmetric loading,
the vertical, radial and angular components of the influence field can be expressed as

acos (8—10,)

U, t(r.0.25a,5) = 2u
0

” [2(Czis b))+ (E 2583 B)]ES (al) o (ré) dE

)

+ JX [72(E z58:b) =7 (& 255 B))ETo (al) Ty (rE) dé} (36)

) in (6 —0, * . . .
(0,530 = — L) ” [72(6.2350) + 71 (&0 7383 D@D o r) €
0 0
- [ [2(E 2800y~ (& 258 0Ty (a) T (rd) dé} 37)
A (r, 0,254, s) = 35”—26’—‘-—6—)- { J " Q& 251 B)ETW (@ () dc}. (38)

where the subscript h refers to the horizontal direction of the ring-load.

3.5. Vertical point load att =0,z = s

The vertical point-load Green’s function can be derived from the results in Section 3.3
by considering a vertical ring-load of intensity 1/(2na) and taking the limit of a — 0. The
result is the influence field for a unit internal vertical point-load in the form of

afl(r.0.z:5) = — 5 f 7S zisib)ES, (rl) dE (39)
Ty 1y
an(r.0.z;5) =0 (40)
l re
al(r,0,z:8) = 5 J- Q, (&, z15:0)ES(ré)dé. 41)
T Jo

3.6. Horizontal point-load atr =0,z = s

Analogous to Section 3.5, the Green’s functions for a unit horizontal point load acting
at z=s, r = 0 in the § = 0, direction can be obtained by considering Section 3.4 with a
ring-load intensity of 1/(2na) and taking the limit of @ — 0. The resulting influence field can
be expressed as
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S (0—06y) { [
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4. EVALUATION OF THE GREEN'S FUNCTIONS

Owing to the complex behavior of the integrands which involve modified Bessel
functions with frequency-dependent real and imaginary orders, a direct evaluation of
the improper integrals in the influence fields (19)—(44) is difficult both analytically and
numerically. The situation is further complicated by the expected singular behavior of some
of the Green’s functions. To deal with such problems, it is useful to employ the method of
asymptotic decomposition (Pak. 1987) wherein the leading asymptotic expansions of the
featured integrands (responsible for singular behavior) are extracted and integrated ana-
lytically so that the remaining parts with strong decay can be evaluated numerically.
Mathematically, one may write

W= (uf) 4w (45)

In (45). superscript * stands for ring or pt. while the subscripts | and 2 denote the analytically
and numerically evaluated parts of the influence fields. respectively. To illustrate the
approach. the evaluation procedure for some Green's functions will be presented in this
section. Analogous treatment can be developed for the rest of the influence fields.

4.1. Analvtically evaluated parts of influence fields
By virtue of the asymptotic expansions of modified Bessel functions with large argu-
ments and fixed complex orders

) o AT = e s =) G = DG = 9) (4 = 25)
Ki(x)~ e gl ——— + e o e T
vav | 8x 21(8)° 31(8x)°
A7 T 9)(dh —25)(4vE — 49 .
LT “‘~~”‘\?.|mgHN<:n (46)
418 \y* -
by~ €A R D =) - e 9 -25)
NELZ S 21(8x)° 318’

v - i —9)(4v' —25)(4v7 —49
- (4 =i ) (G — 20) (v - )} |Arg (x)] < ‘n,  (47)
41(8x)? -

the leading asymptotic behavior of the functions 7, 75, 75 Q; and €, as & - o0 can be
written as
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’ C ) < . . . "
PM(Ezisib) = Lo =24 2o e T 2+ |z —s)E]) (48)
] I ,
,},{Ssym (L:,::S;b) == :e Ao 4e 7 : (49)
. C e . - . .
Tg\\ym (Coisih) = - :C e u[.z__-)(:_.\.); . ::A\;-] 4e ¢ "[(3——.’)§] : (50)
sy - C : , - 1 .
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where

‘ T (b (14 by (53)

Being also the parts of the integrands which cause the singular behaviors of the Green's
functions of interest, the foregoing asymptotic representations are independent of frequency
and are identical to those for the corresponding static problem. With (48)—(52), the first
part of the featured influence fields can be expressed as

a
@) zray = 0| T s P ) ) b
Ly Jo
aC )
= ISV R O ¢ ) IR TS I A B O D
Mo~
+ 225 (L L2 4+ 27 (1 1LLO)— |z =s.7 (1L 1. 1)} (54)
@) (O, ans) = — & | QR (s b)Y () (rE) dE
N(lwn
aC )
= - (0 1.0y =2(s—2).75(0. 1, 1)
Wy -
=227 (0. 1.2y =) 7 (0.1, D)) (55)
(@™ 0. 2ra.y) = — ) P sy b @) (kO dE
o L
aC o
= — =1 7.(1.0.0)--2(z—5)7 (1.0, 1)
o -
25 (102~ (s— )7 (1.0, 1) (56)
o
@y (k. za.s) = ‘ QU (Comis P S ad) Sy (r 2y dé
Hy Jy
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= 1170.0.0)+ 2(z+5).7.(0.0. 1)
Hy °

2257 2(0.0.2) 427 (0.0.0) + |z —5].9,(0,0. 1)) (57)



1012 B. B. Guzina and R. Y. S. Pak
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e
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cos (=0 {7 . ; .
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2T,
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where

Somondy = Smondoroacdy) = | J,080,(ad) e W ENdE, (60)
Jo

gmd)y = gundrdy = | e e d (61)
J0

dy = iz=s|. d» =+ (62)

Analytical expressions for the required integrals in (60) and (61) are listed in Appendix
B. It should be noted that the integrals of the form (60) are expressible in terms of complete
elliptic integrals [see Eason er af. (1955)], while those in (61) can be written in terms of
closed-form algebraic functions (Erdelyi. 1954). Analogous to the case for a homogeneous
solid. it can be shown that (i.™), and (4"*), are logarithmically singular as r - g and z —
s, while (48'), is Cauchy singular as r -0 and z —s. In contrast, Green’s functions
41" aL™ and 407 exhibit no singularities.
4.2 Numerically evaluated parts of mfluence fields

As mentioned earlier. the residual integrands in the integral representation of the
Green's functions (4}), are composed of regular functions. By design, they also decay
quickly with ¢ owing to the asymptotic extraction. As a result, the residual semi-infinite
integrals can be evaluated numerically with a suitable truncation of the integration interval.
For convenience, the integration is performed in terms of the auxiliary variable { = £/b,
which is the natural choice considering the form of the functions y,, 7,, 73, Q; and Q, [see
(A1)-(AS5)]. These functions have generally a number of poles along the formal path of
inversion integrals in the complex J-plane due to the zeros of their denominator A({) defined
in (A13). By virtue of the analyticity of the integrands, the path of integration can be
deformed into the upper half-plane 1o avoid the singularities on these occasions. In the
selection of such modified paths. however, the following observations are pertinent.

With the dimensionless frequency & defined as
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()= —= . (63)

N (Hoip)
where r,, i1s a characteristic length. one may observe that both radicals x and f§ are real-
valued for @/(br,) < 1 2. In this case. Abs(A(J)) monotonically increases along the real
axis, starting from zero at ¢ = 0 (see Fig. ). It can be shown by a limit analysis that the
featured integrands are all regular at { = 0. Consequently. for @;(hr,) < 1/2. there are no
poles along the formal path of integration. By virtue of the Cauchy theorem in the theory
of complex variables, one may thus deduce that the imaginary part of the kernels in (19)-
(44) and, therefore, of the respective displacement influence fields will be identically zero,
i.e. no radiation damping. Physically this means the existence of a cutoff frequency. The
same phenomenon was observed by Gladwell (1964) in his study of the forced torsional
vibrations on an elastic stratum resting on a rigid base. and by Guzina (1992) in the study
of dynamic response of the surface footing resting on a heterogeneous half-space. The
reason for the existence of the cutoff frequency in a heterogeneous half-space is discussed
in Nettleton (1940) who observed that wave rays in such media are generally curved. In
particular, for soils with a linearly varying velocity, the wave will follow a circular path. as
shown in Fig. 2. Thus total reflection of waves is possible and does not require the presence
of a discontinuity in the elastic properties of the medium. Note that the circular wave paths
imply that one will find spherical wave fronts as in the homogeneous case, although their
centers are shifted downwards as the wave propagates through the medium.

For @/(bry) > 1:2, the typical behavior of the function A({) is presented in Fig. 3. As
the ratio @/(br,) increases. orders » and f (of the Bessel functions) become imaginary, and
multiple poles start to appear along the formal path of integration, i.e. the positive real {-
axis. The phenomenon of multiple poles was also found by Gladwell (1964) in the case of
torsional vibrations on a homogeneous stratum. Furthermore. it is observed that with

Ring Load

M=, (1+bz)? L
" Wave Fronts

Fig. 2. Wave propagation in heterogeneous media
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Fig. 3. Behavior of the denominator A(2) tor large values of @ (bry).

mereasing & (bry). the number of the poles would increase and their positions along the
path of integration would move to the right. As an upper bound for the position of the
pole furthest from the origin (J = 0). one may adopt the location of the Rayleigh pole for
the homogeneous medium with 2 = i = p,. i.e.

0}

*

R 1.088
T oh T T ey

(64)
Physically. the above statement describes the lower bound for the phase velocities in the
heterogeneous medium characterized by (1) as the Rayleigh wave speed in its ‘uppermost
layer’. p = w,. In fact. as the ratio & (hr,) increases, changes in the medium properties over
the wave length become smaller and the actual position of the pole furthest from the origin
approaches J* from the left.

Prompted by (64). the length of the modified path with respect to ( is chosen to be
d=1.0+ 1.1 (bry). Furthermore. the modified path of integration should not be too close
to the real axis to avoid oscillatory behavior. nor too far from it to preserve the analyticity
of the integrand. The resulting route is presented in Fig. 4.

SOMLLUSTRATIVE RESULTS

By meuns of the foregoing mathematical analysis and computational scheme, the
dynamic Green's functions for the vertically heterogeneous medium can be evaluated
numerically. In what follows. a set of numerical results will be presented for illustrative
purposes. To normalize the results. the characteristic length r, is chosen to correspond to
the radius of the ring load and the embedment depth of the point-load, respectively.

Im(%)

Modified Path of Integration

h=0.5+0.1d
d = 1.0+1.1w/(bry)

- ———f—

W Re({)

Multiple Poles

e 4 Moditied path of integration.
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lellzg)

Ho Re(u

A

o Im(u7¢)

Frg. 5 Ring-load Green's function ¢, r = ¢ 3 = 0.5,

In Fig. 5, the real and imaginary parts of the Green's function 41" with s = 4a are
plotted versus depth along the surface r = « for a dimensionless frequency & = 0.5. Results
are presented for three different values of the heterogeneity rate in the range
0.01 < bry < 0.10, together with the numerical results of the homogeneous half-space for-
mulation, denoted by "Ar, = 0.00". From the display. it is apparent that as » decreases to
zero, both the real and imaginary parts of the Green's function approach the corresponding
solution for a homogeneous half-space. As expected. the real part of 1" exhibits a
logarithmic singularity at - = s and r = a, while its imaginary part remains regular through-
out. It can be also observed from Fig. 5 that the wave length increases and the imaginary
part diminishes with a higher value of » which means a stiffer medium. In fact, for a
sufficiently high b, the cutoff frequency would reach the prescribed frequency of excitation.
rendering the imaginary part of the response zero. In Fig. 6, the foregoing Green'’s function
is plotted versus the radial coordinate on the horizontal plane -z = s. Comparison with the
previous figure reveals that the displacement field has a slower decay in the radial direction
than in the z-direction along which the modulus increases.

The response of the medium due to a time-harmonic radial ring-source located at
s = 4a with @ = 0.5 1s illustrated in Fig. 7, where 4,/ is plotted as a function of the radius
at z = s. As a self-equilibrating buried source. the Green's function #,;™ is characterized by
a more localized response at the neighborhood r = «. In addition, one may note that
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Fig. 6. Ring-load Green's function 4™, z = 5, & = 0.5. Fig. 7. Ring-load Green’s function #.", z = 5, ® = 0.5.
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Fig. ¥ Point-load Green's tunction o' .+ = 0.5 = 3.0,

1" (0,z;a,5) =0, i.e. the radial component of the Green's function vanishes at r = 0,
which is in accordance with the axial symmetry of the problem.

Finally, the asymmetric Green's function #f' due to a horizontal point-load acting in
the 6, = 0 direction with @ = 3.0 is presented in Fig. 8. Taking s to be r,, the response is
plotted along the z-axis for 6 = (. Similar to the previous results, a decrease in the hetero-
geneity parameter b is accompanied by a reduction of the wave length and an increase in
the magnitude of the displacements. Not surprisingly, the difference between the numerical
solutions for a homogeneous (br, = 0.00) and a weakly heterogeneous (br, = 0.06) medium
is found to be small at points close to the free-surface. where the two solids have the same
modulus. By virtue of expression (58), the real component of the Green’s function always
exhibits a Cauchy-singular behavior with the response becoming more localized with
increasing b. In other words. the singular character of the Green’s function is not affected
by the spatial variations in the medium properties.

6. CONCLUSIONS

In this paper, the three-dimensional response of a smoothly heterogeneous elastic half-
space due to a variety of time-harmonic ring- and point-sources is presented. The evaluation
of these Green's functions on the basis of decomposition into analytical and residual parts
is described in detail. The analytical parts for the ring- and point-load Green’s functions
are found to be expressible in terms of the elliptic integrals and algebraic functions,
respectively. The residual regular parts of the Green's functions can be evaluated by the
method of numerical contour integration. A set of numerical results is presented and
compared to the solutions for a uniform half-space. highlighting the characteristic features
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of wave propagation in media whose modulus increases continuously with depth. These
fundamental solutions can be directly incorporated into various boundary integral equation
methods for relevant boundary-value problems in solid and geo-mechanics. With the aid
of Fourier or Laplace transforms. the present solutions can be readily extended to the
treatment of transient problems.

Acknowledgement -~ The support from the National Science Foundation through Grant BCS-8958402 to R.Y.S.P.
15 gratefully acknowledged.

REFERENCES

Apsel. J. R. (1979). Dynamic Green's functions for lavered media and applications to boundary value problems.
Ph.D. Thesis. University of California. San Diego.

Banerjee. P. K. and Mamoon. S. M. (1990). A fundamental sotution due to a periodic point force in the interior
of an elastic half-space. Earthquake Engng Structural Dynaniics 19, 91-105.

Brebbia. C. A.. Telles. J. C. F. and Wrobel. L. C. (1984). Boundary Element Techniques: Theory and Applications
in Engineering. Springer. New York

Eason. G.. Noble. B. and Sneddon. 1. N. (1955). On certain integrals of Lipschitz—Hankel type involving products
of Bessel functions. Philos. Truns. R. Soc. Lond. Series A 247, 529 -551.

Erdelyi. A. (Ed.) (1954). Tubles of Integral Transforms. Vol. 2. McGraw-Hill, New York.

Gladwell. G. M. L. (1964). The forced torsional vibration of an elastic stratum. Int. J. Engng Sci. 7, 1011-1024.

Guzina. B. B. (1992}, Dynamic response of surface foundations on heterogeneous soils. M. S. Thesis, University
of Colorado. Boulder.

Hardin. B. O. and Drnevich. V. P. (1972} Shear modulus and damping in soils : design equations and curves. J.
Soil Mech. Foundation Engng Div. Ani. Soc. Civil Engincers 98, 668—692.

Nettleton. L. L. (1940). Geophyvsical Prospecting tor Oil. McGraw-Hill. New York.

Pak. RY. S, (1987). Asymmetric wave propagation in a half-space by a method of potentials. J. Appl. Mech.,
Am. Soc. Mech. Engineers 54, 121 126,

Pak. R.Y.S.and Guzina. B. B. (1995). Three-dimensional wave propagation analysis of a smoothly heterogeneous
solid. J. Mech. Phys. Solids 43, 333 331,

Pak. R.Y. S. and Ji. F. (1994). Mathematical boundary integral analysis of an embedded shell under dynamic
excitations. /nr S Num. Meth. Engng 37, 250] 23201

APPENDIN A KERNEL FUNCTIONS

v i ,
SHLIvhy = His ooy VK v

hi R

2ES L |[28+5 Ky
LV Oy / o “jH:[+ ,i(_»‘_)_,I:”

AN ”[/:l\)i 2v K/f+|(,1<)

Vo VKL (V) o
5 Dol LUK (V)
hig - 32 )AL (K,

A N Vo K NG EQ)
] e e ) }

K, 2+5 K (x 2 K;(»
SRt s R K
K. () v Ky 2y Koo

i l\',tt' ’ I\(~) !«w(‘:)
/ " B * f .7";:7 4 - 3
[ l\ A ! ) l N T +f ) 14(2) }

Kivi Kk (1')’2‘r5 K, (1) :|

+

TR OA O A

K.vy Ko [2+3 Ky 1
+ : EA |

K, (O k0] 2v AL (v f
- Ht- \)\ \ ]I_(\')I\,t\)

b, 3y :»)
s L o 2B+5 Kylx

—~ 1 (IR, (v 4 "'(HJ s #19) ]:|) (Al)

ST o | K



Elastodynamic Green's functions

1019

CS T by = s :l\ ; TLAK 00
v il N \I\,(\' S VI/H](C)
K& <H\ l"/‘(f)/\i“’r){ﬁiﬁ+g[/:(Q) }
/ . Lt - PR
LR ! ,)
S He- ; [ (K () (A2)
ol ) 2x-3 K (1)
Al by = Hiy D) CLOVK ) 1 EACIARN |
/‘71‘1 3;(’)f 2y K ()
ez .
S L ()
IRy R AR
LX) ,(H[ EN 1) i
N K, Y, i
o R ki
b= 3 A “\“l‘f'
([ K1) o ) ¥ K
Ly s
S N 0 ( K. D)
A1) LK () 245 Ko\
. Ko ALY 3K _
| At K. 1 ()
o - L i A
l N A EE u”‘,' 1,1;’)}
, Ayy A
AL O K, D
A A o[22 3 Ko | 2/!+§ Kylx) |
A KD 2y R v Ky, ()
bl 2u3 Lo
- H(z w5 \‘ 1 '——«‘l,(»\‘hl\'w\) /j ’ EREAN
b | 2
b 3 g 1
WS Ko
ARRT vt\)] T j\ (A3)
oo . 2y )
Q(i.zosihy = iy o) <LK, (g -
M I AEY
25 Kutn) |
L OOK oy - -
© ‘ )[ v Koo i
3 N (A, () 2 3 K, (v)
. o ! ; \ /.(;)/\,(1')("; ST Ll'—1:|
/7(l 32 ALD TR0 - K, (x)
P V) A ) YN
/ +1- - -y |
R e LU e ]
A (v} 26+ 3 K
- LiOK. ()2 |
A (D - ' [ 2 A }
“, A . [/ A v 1)
[ A B . B
Y N LR N Do) ]
K.ivy  Koiv)
KOV K, D)

; K, v K, ) jx 3 K, (V) ] 2[{f§7K,i(>1') -
KD KD 2y A, v K ()
IR [22—3 K (
iz ‘_ b «!I,(l’)l\' o] /7 ,—‘5\—,—' ﬁl}
bt PR L2y K, ()

2h+5 L R
R AT S IU I (Ad)
Y {00

and



1020 B. B Guzina and R. Y. S. Pak

B
Q. (.zivih) = H(.\'—:)—‘\-; {I,,(.\')K/f(.\‘l
b7 -3 L

2y~ 3 1,‘,(,\-)][21—3 K,(3) }]
BT SR AL | A |

T | KL S

+1L()K, . ()

VD K0
A= 32)A00) (K- 162

/"w({)ﬁ v K_A_(VJ \ [»~|(:I
[ ke ) s }
3

K, ) 29 -3 K (x 203 K, (1)
+ “""('.\,\: LUK, .(,1)[-—?—~~—— 9, 41][3—_~ AL 771]

Lt Ky(v)

K, K, (0

PRV N R RS

L V‘1\',,_‘n;>+"‘)+(;"1<,,,t(;)”‘, L)
2»0(_?? ;,K'(-I'L 1

' 2v K, )

Ko 2a=3 K(v) |
LoD 2 KL )

\ | “ i )
+H(—s) {[_.‘(‘rjk‘,.(_\‘)
b 37y

203 L, () 223 K, (v) }
B T S i e —1 .
IS I.(v) 2y K () )

In the above. H denotes the Heaviside funcuon. and

+LAVK, ()

' W p [ wp
T Al i
N 3pab v Hob”

=0 = l4hn). v = l(14bs)

fi = 40+ (6 —daff+ 287 — 100+ 68+ 117 1 130 f o+ 67 fi — 6 - D — 122+ 387 + Da 4388
/o= (Bx— 60 +(—bx +122—7)]

fo=@F+1000 + (67 + 128 —5)¢

e e

fo= =40 AR+

. K Ky(d) . K K<)
A(l) = - - S o fy e
r=1 K, () Ko (O ) K, (O / k,vf»x(\-)fh

APPENDIX B: EXPRESSIONS FOR .#,(m. n. /) AND #.m, )

F,00.0.0) = — F
£(0.0.0) = = Fig)

70,01 = 25 gy
Sa00 = e ]

2 .. . X 2}
F00.0.2) = - Adi{r"+a +d{)-B D Elg)— -——— F(4)

a8'D aB'D

d, . d(r—a) i
S0 = - g - T g e
1.0, a9 meTmp et HO—a

(AS5)

(A6)

(AT)

(A8)

(A9)

(A10)

(A1)

(A12)

(A13)

(B1)

(B2)

(B3)

(B4)



Elastodynamic Green's functions

1 .- L -
S (L0 = %":'be(/ - —d; VE(g) ~ HI‘B[' {y)
d, . . . . R | . d, R . N
FAL02)y == W +a +dDum a —diy+3B D Ey) T a—di)F(q)
B D B D
7000, 1.0) o U YHia -
. . = — - )+ - ——— . - -r
9. nuB (q rulr+ua)B ta-m=+ a o=t
;/()1171 T i:E)+ll-'
O LD = gpl R g B
d, . ) o N . N . d . . R
A A0.1.2) = o M —dia - —di) 438D Ely) — (a7 —dFg)
raB D~ nuB D
S0 L0 = -2 Egy - e dE
11Dy - (¢) aap' T diVFig)
= e e g
Sl 1= m'uBD(’ T A b - mraB @)
F A1)y = - ) VB DG v d +d)) —dI D +draB ) Ewg)
mraB D
1 . . . 5
o UBTD - dir kas  dDY F ()
wraB D
r ~ - N "
- ( di+r - d,
‘ ( ‘ \‘ \ ¢ / \(,) I R
Fom = I o N >
B r=0.,
L d

1021

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

Here F(g). Elg) and [lty. p) are the complete elliptic integrals of the first. second and the third kind,
respectively. H(r —«) is the Heaviside step function. and d,,,, 1s the Kronecker delta. Finally.
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